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1. INTRODUCTION

Let C be a Jordan curve, D its interior and E its exterior. For 1 ~ p ~ 00,

let U'(D) denote the set offunctionsfholomorphic in D and such that

I lip

Ilf!le(D) = (7 It If(z)i P dx dy) < 00

where A is the area (Lebesgue measure) of D. (If p = 00, the last inequality
is to be understood as sup D If I < (0). For f E U(D), set

where 7Tn is an arbitrary polynomial of degree at most n. The purpose of this
note is to prove the following result.

THEOREM. Let 2 ~ p ~ 00. A function f E LP(D) is the restriction to D of
an entire function if and only if

lim (EnP)l/n = 0.
n--'>'x

In that case, f is offinite order p if and only if

I
. n log n
1m sup = p

n-.uo - log EnP

and, if p > 0, offinite type a if and only if
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(2)
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where d is the transfinite diameter 0/ c. In the case p = (f), it is enough to
assume that / is continuous on D.

In the case p = 2 and D = {z : I z I < I}, this theorem was already
proved by A.R. Reddy [6]. In the case p = 00 a proof of the theorem was
given by A.V. Batyrev [8]. For the sake of completeness and since it is short,
we shall nevertheless include proof of this last case. This case is reminiscent
of a classical result of S. Bernstein [1, p. 113] on the approximation of con­
tinuous functions on finite intervals, a result that was recently extended by
R.S. Varga [7].

2. THE FABER SERIES

Since an arbitrary Jordan curve can be approximated from the inside as
well as from the outside by analytic Jordan curves (using Riemann's mapping
theorem, for example), since EnP(f; D) increases with D and since the trans­
finite diamater is a continuous set function (see M. Fekete [5]), it is enough to
prove the theorem for analytic Jordan curves. Similarly, if/is continuous in
D and if limn~oo En 00 = 0, then, by virtue of Morera's theorem, / is holo­
morphic in D. So let/be holomorphic inside the analytic Jordan curve C.

Let us recall a few facts about Faber polynomials. Let w = <p(z) map E
conformally onto {w : I wi> I} in such a way that <pC (f) = 00 and that
<p'( ex:» > O. For I z I sufficiently large, one has

(3)

and since C is assumed to be analytic <p is actually holomorphic on C also.
The nth Faber polynomial Fiz) of C is the principal part at 00 of (<p(z»n, so
that

zn
F(z)=-+'"n d n .

These polynomials where introduced by G. Faber who proved [4] that

Fn(z) "" (<p(z»n as n -+ 00

uniformly for z E E and that

lim (max I Fiz)l)ljn = 1.
n~':t:: zEC

Any function/holomorphic in D can be represented by its Faber series

fez) = I anFn(z)
n=O

(4)

(5)

(6)



where
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an = _1_. f f( <p-l(W)) w-(n+!) dw
27Tl Iwl~r
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and r < I is sufficiently close to 1 so that <p-l is holomorphic and univalent
in I w I ~ r, the series converging uniformly on compact subsets of D. We
shall need the following result.

LEMMA I. The function f is the restriction to D of an entire function if and
only if

lim (I an ])l/n = O.
n->oc

In that case, it is offinite order p if and only if

r n log n
In;}}r~P - log 1 an I = p

and, if P > 0, offinite type a if and only if

(7)

(8)

The proof of this theorem is analogous the proof of the classical result for
the Taylor coefficients of an entire function (see R. P. Boas [2, p. 9]).
Equation (7)'is already contained in [4]. Let us sketch a proof of (8). Assuming
f entire of finite order p, one can write

with arbitrarely large R. Since, by (3),

lim <p-l(l1') = d
Iw!->oc 11'

one has for all sufficiently large ] w ! that

(d - E)I w I ~ I <p-l(W)] ~ (d + E)I w 1

so that

and that
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for all R sufficiently large. To minimize the right member of this inequality,
we select

R =c ~ 1_ ("~_11~_)1/(0+E)
d+E P-~-E

and obtain

On the other hand, if

(here and in the sequel K is a number independent of n, not necessarily the
same in each occurence), the formula (6) will hold for any z and, hence,

ro

If(z) I ~ K L: /r"/(o+<l I Fn(z)!.
n~O

Using (4), we get that

for all z E E and, using (3), that

1 z I
1 cp(z) I ~ d _ E

for all sufficiently large I z I . These inequalities imply that

Ij(z) I ~ K f /1-n/(o+<) (_i_z_1)"
n~O d - E.

(9)

(l0)

for all z with sufficiently large modulus. Since the largest term of the series
Ln (xlnA)n is e(A/elxI/1. and it occurs for n = (lIe) Xl/I., a standard argument
shows that (10) implies

(

I z I )0+2<
If(z) I ~ Ke d _ E

that is, f is of finite order at most p.

3. THE CASE P = 2

Consider the polynomials



defined through
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These polynomials were first considered by T. Carleman [3] who proved that

(
(n + 1) A )1/2

Pn(Z) "-' 7T <p'(Z)(<p(Z))n as n ->- 00 (11)

uniformly for Z E E. Any function f E V(D) can be expanded in these poly­
nomials

00

f(z) = L bnPn(z)
n~O

where

bn = ~ ffvf(z) Pn(z) dx dy

and the series converges uniformly on compact subsets of D.
Parseval's relation yields

We shall use the following elementary lemma.

LEMMA 2.

I· nlogn I' nlogn1m sup - 1m sup
n->oo - log En2 - n-;oo - log [ bn I

and, for any p > 0,

Let us, for instance, prove (13). Since

the inequality

(12)

(13)
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is trivial. On the other hand, if

I. n /1m sup - J bn I" n ==: U
IHX ep

is finite, then

/' ( ep(u. + E) )n/p
I, hn -.::::: K

11 .

so that

(£11. 2)2 ='S; K L (ep(uk+- E) to;"
1.-=11.-,-1

= K ( ep(u + E) )2(11.+1)/(1 (1 _ (ep(u 1E) )2'0)-1
n -I I, ,\ n-t

for n 2ep(u + E), say, and hence

lim sup!'.. (En2)p/n ='S; u.
n->y) ep

Let us now prove (2) in the case p = 2. We assure thatfis an entire function
of order p 0 and type a. Using lemma 1, we obtain for its Faber coefficients
the estimate

K ( epd"(u
n
+ E) )n;".

I an I

Now, taking into account the orthonormality of the polynomials PnCz), one
has

and hence

en

[ bn i ='S; L i ak 1 max i Fk(z)l.
k~n+l tEG

Since, by (5)

(14)
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we obtain as above

b
n

I ~ K f (epd
a
(1 + ~a (a + E) t a

k~n+l

(
epda(1 + E)a (a + E) )n/a

~K. 11

for all sufficiently large 11 and therefore

by virtue of lemma 2.
Conversely, suppose that (2) holds. By lemma 2, we will have
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and the representation (12) will hold for all z. Since, we also have, by (11),
that

jPn(z)j ~ K(n + 1)1/2 i ep'(z) I1ep(z)ln

for all Z E E, that

I ep'(Z) 1 ~ K

for all Z E E (by (3)) and that, using (9),

I Z I
1 r(Z) I ~ d _ E

for all Z with sufficiently large modulus, we will have for those values of Z that

,~ K f (ep(a + 2E) )n/a(. d I Z I )n.
n~O 11 d - E

(IS)

Since the largest term of the series Ln (ep/..fn)nfaxn is eMrP and its value is
attained for n = epA, inequality (IS) implies that

I I(z) 1 ~ Ke(a+3<)(d lzl/(d-<»a,

that is, 1 is of type at most a.
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In view of the inequalities
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4. THE CASE p> 2

(l6)

it is sufficient to consider the case p = 00. We shall content ourselves with
proving, say, (l) in that case. Suppose f is an entire function of finite order p.
Then

x

~ I I ale I max I Fiz)l·
k~n+l ZEC

Since, by lemma 1,

and since (14) holds, we obtain as above

00

Enoo ~ K I k-lc/lp+E)(1 + E)lc
lc=n+l

00 ((1 + E)P+E )k/(P+d
~K I

lc=n+l n + 1

that is

n log n :<: n log n
- log Enoo "" [nj(p + E)] log n - log K - n log(1 + E)

and

n log n
lim sup I ~ p.

n~oo - og En 00

In view of inequalities (16) and the fact that (1) holds for p = 2, this last in­
equality actually is an equality. Finally, assuming (1) withp = 00, we deduce
from (16) that (1) will hold for p = 2 and hence thatfis of finite order p.
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